

Mathematics for Economists (ECON 205/ ECON 230)

Spring 2021/2022

Instructor:	Ebrahim Alebrahim	Time:	11:00-11:50AM
Email:	ebrahim.alebrahim@ku.edu.kw	Place:	D3 1005
Website:	www.ealebrahim.com		
Office Hours:	10:00-10:45 or by appointment	Office No.:	1074

Course Pages:

https://moodle.ku.edu.kw, and MS Teams.

Office Hours: 10:00-10:45

References:

The primary textbook for the course is

• Vassilis C. Mavron, and Timothy N Philips, Elements of Mathematics for Economics and Finance, Springer, 2000. Accessible as an electronic book from the university library website: http://kuniv.vdiscovery.org/ (login with your ID then click on the ebook link) (Will be referenced as EM in the syllabus)

Additional recommended references:

• Mik Wisniewski, Mathematics for Economics an Integrated Approach, Palgrave Macmillan, Third Edition, 2013 (Will be referenced as MIK in the syllabus)

Course description:

This course covers the basic mathematical tools required for the study of economic intermediate theory courses, econometric and upper-division electives in economics. Topics include economic applications of functions, derivatives and integrals, optimization with two or more independent variables, constrained optimization, matrix algebra, and difference and differential equations.

Course learning outcomes:

- CLO 1. Model economic questions as mathematical problems.
- CLO 2. Apply their prior knowledge of calculus and matrix algebra to economic applications.
- CLO 3. Mathematically express economic concepts and successfully interpret relevant variables and parameters in economic models.
- CLO 4. Acquire foundations of major techniques used to solve constrained optimization problems in economics.
- CLO 5. Acquire foundations of major difference and differential equations techniques used in economic theory.

Types of Emphasis:

- (I)ntroduce: Students will be introduced to the skill and their grasp of it assessed in the course.
- (A)pply: The course will not cover the skill. Students should have a high-level grasp of the skill and are required to apply it in the course.
- (R)einforce: Students should have an introductory-level grasp of the skill and the course will improve their mastery to a higher level.

Prerequisites:

- For students admitted prior to 2021/2022: ECON 111, and taking ISOM 110 is highly recommended.
- For students admitted from 2021/2022 onward: ECON 140, and ISOM 110.

Grading Policy:

- Assignments(5%)

Important Dates:

- Midterm 12/05/2022 11:00-11:50AM Location: D3 1005
- Final Exam Check the portal.

Course Policies:

- Attendance and Participation: Every student in this course must abide by the Kuwait University Policy on Attendance (published in the Student Guide, Chapter 3, Section 13). A copy of the student guide can be accessed online on: http://www.ku.edu.kw/cs/groups/ku/documents/ku_content/ kuw055940.pdf
- Cheating and Plagiarism: Every student in this course must abide by the Kuwait University Policy on Cheating and Plagiarism (published in the Student Guide, Chapter 3, Section 2).

Academic Honesty:

Fairness, trust, and honesty should be the basis between each student and their colleagues as well as the instructor. Plagiarism and cheating are strictly prohibited.

University rules:

Students are required to read and be aware of the university rules as stated in: http://www.ku.edu.kw/cs/groups/ku/documents/ku_content/kuw055940.pdf

Grade Distribution:

А	A-	B+	В	B-	C+	С	C-	D+	D	F
95-100	90-94	87-89	84-86	80-83	77-79	73-76	70-72	65-69	60-64	Below 60

Tentative Course Outline:

1Introduction and Motivation"Why mathematics is important • What are models "Types of Models • Examples1 & 2Review of inear and non-linear equations(EM2.2,2.4), solutions of quadratic equations(EM3.3) simultaneous equations (EM2.3), and functions (EM4.1) • Applications to budge time (EM2.5) and to demand and supply models (EM2.6) • treak-even profit (EM3.4) • quadratic demand and supply models (EM3.4), and cost function (EM4.4) • Review of exponential and logarithmic functions (EM1.1-5.3) • Applications: return to scale and linearization of production function (EM5.4) • Determinants and the adjoint Method (EM10.2) • Systems of equations (EM10.3) • Determinants and the adjoint Method (EM10.2) • Systems of equations (EM6.4), and marginal products (EM6.1) • Matrix operations (EM10.2) • Systems of equations (EM6.4), and marginal products (EM6.7) • Application to market equilibrium (MIK B6.1) • Application to national income model (MIK B6.3) • Application to market equilibrium (MIK B6.1) • Application to return (EM6.1-6.3) • Application to market equilibrium (MIK B6.1) • Application to return (EM6.1-6.3) • Application to product (EM6.7) • Application to product (EM6.7) • Application to product (EM6.7) • Application to product (EM7.7) • Application to production function (EM7.6) • Application to government taxes (EM7.8)8Partial differentiation• Review of partial differentiation, differentiation, and interprotation (EM9.3) • Applications to commis(EMS.7). Elasticity and cross-elastics, arc and point elasticity, marginal rate of substitution, marginal products.9Unconstrained optimization• Review of the Lagrange multiplier and its interprotation (EM9.3) • Applications to constrained problems: Iso-curves (EM9.4) • Applications to constrained problems: Iso-curves (EM9.4) • Applications to constrained	Week	Module	Topics	
1 Introduction • Types of Models • Examples 1 & 2 Review of linear and non-linear equations(EM2.2.2.4), solutions of quadratic equations(EM3.3), simultaneous equations (EM2.3), and functions (EM4.1) • Applications to budget line (EM2.5) and to demand and supply models (EM3.4), and cost function (EM4.4) 1 & 2 Economic relationships • Review of exponential and logarithmic functions (EM1.0.2) • Systems of equations (EM10.3) 3 & 4 Matrix Algebra • Fundamentals (EM10.1) • Matrix operations (EM10.2) • Systems of equations (EM10.3) 3 & 4 Matrix Algebra • Determinants and the adjoint Method (EM10.2) • Systems of equations (EM10.3) 3 & 4 Matrix Algebra • Determinants and the adjoint Method (EM10.2) • Systems of equations (EM10.3) 5 & 6 Differentiation • Application to market equilibrium (MIK B6.1) • Application to national income model (MIK B6.3) 7 Single variable optimization • Review of local and global extremum, functions concavity, and second order derivative tests ((EM7.1) 7 Single variable optimization • Review of matrix and fifterentiation, differentiation, differentiation, differentiation, differentiation, differentiation, differentiation, differentiation, differentiation, and to adjuit variate equilibrium (MIK B6.1)-9.2) 9 Unconstrained optimization • Review of multivariate optimization (EM9.2)	1	Introduction and Mativation	• Why mathematics is important • What are models	
I & 2Economic relationships• Review of linear and non-linear equations (EM2.2.4), solutions of quadratic equations (EM3.3) , simultaneous equations (EM2.3), and functions (EM4.1) • Applications to budget line (EM2.5) and to demand and supply models (EM3.4), and cost function (EM4.4) • Review of exponential and logarithmic functions (EM5.1-5.3) • Applications: return to scale and linearization of production function (EM5.4) • Applications: return to scale and linearization of production function (EM10.3) • Applications: return to scale and linearization of production function (EM10.3) • Applications: return to scale and linearization of production function (EM10.3) • Systems of equations (EM10.3) • Perterminatis and the adjoint Method (EM10.5) • Application to market equilibrium (MIK B6.1) • Application to national income model (MIK B6.3) • Applications: concervity and second order derivative tests ((EM7.1-7.5)) • Application to profect competition and monopoly (EM7.7) • Application to profect competition and monopoly (EM7.7) • Application to profect competition (EM10.1)• Application to government taxes (EM7.8)8Partial differentiation • Review of partial differentiation, differentias, and total derivatives, and chain rules (EM8.1-8.6) • Application to cost minimization (EM9.1) • Applications to constrained problems: Iso-curves (EM9.4) • Applications to cost minimization (EM9.1) • Applications to cost minimization (EM11.1) • Applications to ut	1	introduction and Motivation	• Types of Models • Examples	
1 & 2 Economic relationships			• Review of linear and non-linear equations(EM2.2,2.4), solutions of quadratic equations(EM3.3)	
1 & 2 Economic relationships Applications to budget line (EM2.5) and to demand and supply models (EM3.4), and cost function (EM4.4) break-even profit (EM3.4) • quadratic demand and supply models (EM3.4), and cost function (EM4.4) Review of exponential and logarithmic functions (EM1.5.3) Applications: return to scale and linearization of production function (EM5.4) 3 & 4 Matrix Algebra Fundamentals (EM10.1) • Matrix operations (EM10.2) Systems of equations (EM10.3) Determinants and the adjoint Method (EM10.5) Application to market equilibrium (MIK B6.1) • Application to national income model (MIK B6.3) Applications: concept of marginals, marginal revenue , marginal propensities (EM6.4), and marginal products (EM6.7) Application to perfect competition and monopoly (EM7.7) Application to perfect competition and monopoly (EM7.7) Application to perfect competition function (EM9.7.6) • Application to government taxes (EM7.8) Applications to Economics(EM8.7): Elasticity and cross-elasticises, arc and point elasticity, marginal rate of substitution, marginal products. 9 Unconstrained optimization Review of the Lagrange multiplier and its interpretation (EM9.3). Enview of definit and indefinit integras and integration rules (EM11.5) • Applications to cost minimization (EM9.2). Applications to utility maximization, production, and cost minimization (EM9.3). Enview of the Lagrange multiplier and its interpretation		Economic relationships	, simultaneous equations (EM2.3), and functions (EM4.1)	
 break-even profit (EM3.4) • quadratic demand and supply models (EM3.4), and cost function (EM4.4) Review of exponential and logarithmic functions (EM5.1-5.3) Applications: return to scale and linearization of production function (EM5.4) Fundamentals (EM10.1) • Matrix operations (EM10.2) • Systems of equations (EM10.3) betak-even profit (EM3.4) • quadratic demand and supply models (EM3.4), and cost function (EM4.4) Review of exponential and logarithmic functions (EM10.2) • Systems of equations (EM10.3) betarminants and the adjoint Method (EM10.5) Application to market equilibrium (MIK B6.1) • Application to national income model (MIK B6.3) Basics of limits (EM4.2) • Review of differentiation and differentiation rules (EM6.1-6.3) Application to market equilibrium (MIK B6.7) Basics of local and global extremum, functions concavity, and second order derivative tests ((EM7.1-7.5)) Application to prefect competition and monopoly (EM7.7) Applications to concurs (EM8.7): Elasticity and cross-elasticises, are and point elasticity, marginal rate of substitution, marginal products. Partial differentiation Review of multivariate optimization (EM9.1-9.2) Application to cost minimization (EM9.1-9.2) Application to cost minimization (EM9.2) Review of definite and indefinite integrals and integration rules (EM1.1-11.4) Applications to constained problems: Iso-curves (EM9.4) Applications to constained and and supply functions. Integration Review of definite and indefinite integrals and integration rules (EM11.5) for linear and nono	1 8. 9		• Applications to budget line (EM2.5) and to demand and supply models (EM2.6)	
 Review of exponential and logarithmic functions (EM5.1-5.3) Applications: return to scale and linearization of production function (EM5.4) Applications: return to scale and linearization of production function (EM10.3) State 4 Matrix Algebra Fundamentals (EM10.1) Matrix operations (EM10.2) Systems of equations (EM10.3) Determinants and the adjoint Method (EM10.5) Application to market equilibrium (MIK B6.1) Application to concept of marginals, marginal reveue, marginal cost, marginal propensities (EM6.4), and marginal products (EM6.7) Review of local and global extremum, functions concavity, and second order derivative tests ((EM7.1-7.5) Application to perfect competition and monopoly (EM7.7) Application to perfect competition and monopoly (EM17.7) Application to cost conomisc(EM8.7): Elasticity and cross-elasticises, are and point elasticity, marginal rate of substitution, marginal products. 9 Unconstrained optimization Review of multivariate optimization (EM9.4).	1 & 2		• break-even profit (EM3.4) • quadratic demand and supply models (EM3.4), and cost function (EM4.4)	
 Applications: return to scale and linearization of production function (EM5.4) Findamentals (EM10.1) • Matrix operations (EM10.2) • Systems of equations (EM10.3) Findamentals (EM10.1) • Matrix operations (EM10.2) • Systems of equations (EM10.3) Paplication to market equilibrium (MIK B6.1) • Application to national income model (MIK B6.3) Applications: concept of marginals, marginal revenue , marginal cost, marginal propensities (EM6.4), and marginal products (EM6.7) Partial differentiation Partial different			• Review of exponential and logarithmic functions (EM5.1-5.3)	
3 & 4 Matrix Algebra • Fundamentals (EM10.1) • Matrix operations (EM10.2) • Systems of equations (EM10.3) 3 & 4 Matrix Algebra • Fundamentals (EM10.1) • Matrix operations (EM10.2) • Systems of equations (EM10.3) 3 & 4 Matrix Algebra • Fundamentals (EM10.1) • Matrix operations (EM10.2) • Systems of equations (EM10.3) 3 & 4 Matrix Algebra • Fundamentals (EM10.1) • Matrix operations (EM10.1) 5 & 6 Differentiation • Basics of limits (EM4.2) • Review of differentiation and differentiation rules (EM6.1-6.3) 5 & 6 Differentiation • Application to market equilibrium (MIK B6.1) • Application rules (EM6.1) 7 Single variable optimization • Review of local and global extremum, functions concavity, and second order derivative tests ((EM7.1-7.5) 8 Partial differentiation • Application to perfect competition and monopoly (EM7.7) • Applications to Economics(EM8.7): Elasticity and cross-elasticises, arc and point elasticity, marginal ret of substitution, marginal products. 9 Partial differentiation • Review of multivariate optimization (EM9.1)• 2) • Review of application to cost minimization (EM9.1)• 2) 10 Constrained optimization • Review of definite and indefinite integration rules (EM11.1)• (Applications to cost minimization, production, and cost minimization (EM9.3) • Envelope theorem* 11 Integration			• Applications: return to scale and linearization of production function (EM5.4)	
3 & 4 Matrix Algebra • Determinants and the adjoint Method (EM10.5) • Application to market equilibrium (MIK B6.1) • Application to national income model (MIK B6.3) • Basics of limits (EM4.2) • Review of differentiation and differentiation rules (EM6.1-6.3) • Applications: concept of marginals, marginal revenue , marginal cost, marginal propensities (EM6.4), and marginal products (EM6.7) 7 Single variable optimization • Review of local and global extremum, functions concavity, and second order derivative tests ((EM7.1-7.5)) 8 Partial differentiation • Review of partial differentiation, differentials, and total derivatives, and chain rules (EM8.1-8.6) 8 Partial differentiation • Review of multivariate optimization (EM9.1) • Review of multivariate optimization (EM9.1) 9 Unconstrained optimization • Review of the Lagrange multiplier and its interpretation (EM9.3) • Envelope theorem* 10 Constrained optimization • Review of definite and indefinite integrals and integration rules (EM11.1) • Applications to cost minimization, production, and cost minimization (EM9.3) 11 Integration • Review of definite and indefinite integrals and integration rules (EM11.5) • Applications to costumer's surplus (EM11.6), and produces's surplus (EM11.5) 11 Integration • Review of definite and indefinite integrals and integration rules (EM11.5) • Introduction to di		Matrix Algebra	• Fundamentals (EM10.1) • Matrix operations (EM10.2) • Systems of equations (EM10.3)	
 Application to market equilibrium (MIK B6.1) • Application to national income model (MIK B6.3) • Application to market equilibrium (MIK B6.1) • Application rules (EM6.1-6.3) • Basics of limits (EM4.2) • Review of differentiation and differentiation rules (EM6.1-6.3) • Applications: concept of marginals, marginal revenue, marginal cost, marginal propensities (EM6.4), and marginal products (EM6.7) • Review of local and global extremum, functions concavity, and second order derivative tests ((EM7.1-7.5) • Application to perfect competition and monopoly (EM7.7) • Application to production function (EM7.6)• Application to government taxes (EM7.8) • Review of partial differentials, and total derivatives, and chain rules (EM8.1-8.6) • Applications to Economics(EM8.7): Elasticity and cross-elasticises, arc and point elasticity, marginal rate of substitution, marginal products. • Review of multivariate optimization (EM9.1-9.2) • Application to cost minimization (EM9.1-9.2) • Applications to utility maximization (EM9.2) • Review of definite and indefinite integrals and integration rules (EM1.1-11.4) • Applications to utility maximization, production, and cost minimization (EM9.3) • Envelope theorem* • Review of definite and indefinite integrals and integration rules (EM11.1-11.4) • Applications to utility maximization, productions, and cost minimization (EM1.5) • Review of definite and indefinite integrals and integration rules (EM11.5) • Review of definite and indefinite integrals and integration rules (EM11.5) • Review of definite and indefinite integrals and integration rules (EM11.5) • Review of definite and indefinite integrals and integration rules (EM11.5) • Review of definite and indefinite integrals and integration rules (EM11.5) •	3 & 4		• Determinants and the adjoint Method (EM10.5)	
5 & 6 Differentiation • Basics of limits (EM4.2)• Review of differentiation and differentiation rules (EM6.1-6.3) 5 & 6 Differentiation • Applications: concept of marginals, marginal revenue , marginal cost, marginal propensities (EM6.4), and marginal products (EM6.7) 7 Single variable optimization • Review of local and global extremum, functions concavity, and second order derivative tests ((EM7.1-7.5) 8 Partial differentiation • Review of partial differentiation, differentials, and total derivatives, and chain rules (EM8.1-8.6) 9 Unconstrained optimization • Review of multivariate optimization (EM9.1) 10 Constrained optimization • Review of the Lagrange multiplier and its interpretation (EM9.3). 11 Integration • Review of definite and monophy (EM11.6), and producer's surplus (EM11.5) for linear and non-linear demand and supply functions. 12 Difference equations • Introduction to difference equations (EM12.3-12.4) 13 Differential equations • Introduction to differential equations (EM13.1)			• Appliaction to market equilibrium (MIK B6.1) • Application to national income model (MIK B6.3)	
5 & 6 Differentiation •Applications: concept of marginals, marginal revenue, marginal cost, marginal propensities (EM6.4), and marginal products (EM6.7) 7 Single variable optimization •Review of local and global extremum, functions concavity, and second order derivative tests ((EM7.1-7.5) •Application to perfect competition and monopoly (EM7.7) •Application to production function (EM7.6)•Application to government taxes (EM7.8) 8 Partial differentiation •Review of partial differentiation, differentials, and total derivatives, and chain rules (EM8.1-8.6) •Applications to Economics(EM8.7): Elasticity and cross-elasticises, arc and point elasticity, marginal rate of substitution, marginal products. 9 Unconstrained optimization •Review of multivariate optimization (EM9.1)-9.2) •Application to cost minimization (EM9.2) 100 Constrained optimization •Review of the Lagrange multiplier and its interpretation (EM9.3) • Envelope theorem* •Applications to utility maximization, production, and cost minimization (EM9.3) • Envelope theorem* •Applications to utility maximization, production, and cost minimization (EM1.1-11.4) •Applications to utility maximization, production, and cost minimization (EM1.1-11.4) •Applications to utility maximization, production, and producer's surplus (EM11.5) for linear and non-linear demand and supply functions. 112 Difference equations •Introduction to difference equations (EM12.1-12.2) •Solution and stability of first order linear difference equations (EM12.3-12.4) •Harrod-Domar growth model (MIK E4.6) •Introduction to differential equations (EM13.1) •Solution and stability of first order differential equations (EM13.2		Differentiation	• Basics of limits (EM4.2)• Review of differentiation and differentiation rules (EM6.1-6.3)	
and marginal products (EM6.7) 7 Single variable optimization • Review of local and global extremum, functions concavity, and second order derivative tests ((EM7.1-7.5)) 8 Partial differentiation • Review of partial differentiation, differentials, and total derivatives, and chain rules (EM8.1-8.6) 9 Unconstrained optimization • Review of partial differentiation (EM7.6) • Application to government taxes (EM7.8) 10 Constrained optimization • Review of partial differentiation (EM9.1-9.2) • Review of the Lagrange multiplier and its interpretation (EM9.3). • Review of the Lagrange multiplier and its interpretation (EM9.3). 11 Integration • Review of definite and indefinite integrals and integration rules (EM1.1-11.4) • Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) • Furview of the cagnange multiply functions. 12 Difference equations • Introduction to difference equations (EM12.1-12.2) 13 Differential equations • Introduction to difference equations (EM13.1) • Solution and stability of first order linear difference equations (EM13.1) • Solution and stability of first order differential equations (EM13.1)	5 & 6		•Applications: concept of marginals, marginal revenue, marginal cost, marginal propensities (EM6.4),	
7Single variable optimization• Review of local and global extremum, functions concavity, and second order derivative tests ((EM7.1-7.5) • Application to perfect competition and monopoly (EM7.7) • Application to growthment taxes (EM7.8)8Partial differentiation• Review of partial differentiation, differentials, and total derivatives, and chain rules (EM8.1-8.6) • Applications to Economics(EM8.7): Elasticity and cross-elasticises, arc and point elasticity, marginal rate of substitution, marginal products.9Unconstrained optimization• Review of multivariate optimization (EM9.2) • Application to cost minimization (EM9.2) • Applications to cost minimization (EM9.2)10Constrained optimization• Review of definite and indefinite integrate multiplier and its interpretation (EM9.3) • Envelope theorem*11Integration• Review of definite and indefinite integrals and integration rules (EM11.1-11.4) • Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) for linear and non-linear demand and supply functions.12Difference equations• Introduction to difference equations (EM12.1-12.2) • Solution and stability of first order linear differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)			and marginal products (EM6.7)	
7Single variable optimization• Application to perfect competition and monopoly (EM7.7) • Application to production function (EM7.6)• Application to government taxes (EM7.8)8Partial differentiation• Review of partial differentiation, differentiation, differentiation, differentiation, differentiation, differentiation, applications to Economics(EM8.7): Elasticity and cross-elasticises, arc and point elasticity, marginal rate of substitution, marginal products.9Unconstrained optimization• Review of the Lagrange multiplier and its interpretation (EM9.19.2) • Application to cost minimization (EM9.2)10Constrained optimization• Review of the Lagrange multiplier and its interpretation (EM9.3). • Applications to utility maximization, production, and cost minimization (EM9.3) • Envelope theorem*11Integration• Review of definite and indefinite integrals and integration rules (EM11.1-11.4) • Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) for linear and non-linear demand and supply functions.12Difference equations• Introduction to difference equations (EM12.1-12.2) • Solution and stability of first order linear difference equations (EM12.3-12.4) • Harrod-Domar growth model (MIK E4.6)13Differential equations• Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)		Single variable optimization	• Review of local and global extremum, functions concavity, and second order derivative tests ((EM7.1-7.5)	
 Application to production function (EM7.6) • Application to government taxes (EM7.8) Partial differentiation Review of partial differentiation, differentials, and total derivatives, and chain rules (EM8.1-8.6) • Applications to Economics(EM8.7): Elasticity and cross-elasticises, arc and point elasticity, marginal rate of substitution, marginal products. • Review of multivariate optimization (EM9.1-9.2) • Application to cost minimization (EM9.1-9.2) • Application to cost minimization (EM9.3). • Graphical representation of constrained problems: Iso-curves (EM9.4) • Applications to utility maximization, production, and cost minimization (EM9.3) • Envelope theorem* • Review of definite and indefinite integrals and integration rules (EM11.1-11.4) • Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) • for linear and non-linear demand and supply functions. • Introduction to difference equations (EM12.1-12.2) • Solution and stability of first order linear difference equations (EM12.3-12.4) • Harrod-Domar growth model (MIK E4.6) • Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3) 	7		• Application to perfect competition and monopoly (EM7.7)	
8 Partial differentiation • Review of partial differentiation, differentials, and total derivatives, and chain rules (EM8.1-8.6) 9 Unconstrained optimization • Review of substitution, marginal products. 10 Constrained optimization • Review of multivariate optimization (EM9.1-9.2) • Application to cost minimization (EM9.2) • Review of the Lagrange multiplier and its interpretation (EM9.3). 10 Constrained optimization • Graphical representation of constrained problems: Iso-curves (EM9.4) • Applications to utility maximization, production, and cost minimization (EM9.3) • Envelope theorem* 11 Integration • Review of definite and indefinite integrals and integration rules (EM11.1-11.4) • Applications to consumer's surplus (EM11.6), and producer's surplus (EM11.5) • Introduction to difference equations (EM12.1-12.2) 12 Difference equations • Introduction to difference equations (EM12.1-12.2) 13 Differential equations • Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3) • Introduction to differential equations (EM13.1)			• Application to production function (EM7.6)• Application to government taxes (EM7.8)	
8 Partial differentiation • Applications to Economics(EM8.7): Elasticity and cross-elasticises, arc and point elasticity, marginal rate of substitution, marginal products. 9 Unconstrained optimization • Review of multivariate optimization (EM9.1-9.2) 10 Constrained optimization • Review of the Lagrange multiplier and its interpretation (EM9.3). 10 Constrained optimization • Review of the Lagrange multiplier and its interpretation (EM9.3). 11 Integration • Review of definite and indefinite integrals and integration rules (EM11.1-11.4) • Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) • Introduction to difference equations (EM12.1-12.2) 12 Difference equations • Introduction to difference equations (EM12.1-12.2) 13 Differential equations • Introduction to differential equations (EM13.1) • Solution and stability of first order linear differential equations (EM13.2-13.3)		Partial differentiation	• Review of partial differentiation, differentials, and total derivatives, and chain rules (EM8.1-8.6)	
marginal rate of substitution, marginal products. 9 Unconstrained optimization • Review of multivariate optimization (EM9.1-9.2) • Application to cost minimization (EM9.2) • Review of the Lagrange multiplier and its interpretation (EM9.3). 10 Constrained optimization • Review of the Lagrange multiplier and its interpretation (EM9.3). 11 Integration • Graphical representation of constrained problems: Iso-curves (EM9.4) • Applications to utility maximization, production, and cost minimization (EM9.3) • Envelope theorem* • Review of definite and indefinite integrals and integration rules (EM11.1-11.4) • Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) • for linear and non-linear demand and supply functions. 12 Difference equations • Solution and stability of first order linear difference equations (EM12.3-12.4) • Harrod-Domar growth model (MIK E4.6) • Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)	8		• Applications to Economics(EM8.7): Elasticity and cross-elasticises, arc and point elasticity,	
9Unconstrained optimization• Review of multivariate optimization (EM9.1-9.2) • Application to cost minimization (EM9.2) • Review of the Lagrange multiplier and its interpretation (EM9.3).10Constrained optimization• Review of the Lagrange multiplier and its interpretation (EM9.3). • Graphical representation of constrained problems: Iso-curves (EM9.4) • Applications to utility maximization, production, and cost minimization (EM9.3) • Envelope theorem*11Integration• Review of definite and indefinite integrals and integration rules (EM11.1-11.4) • Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) for linear and non-linear demand and supply functions.12Difference equations• Introduction to difference equations (EM12.1-12.2) • Solution and stability of first order linear difference equations (EM12.3-12.4) • Harrod-Domar growth model (MIK E4.6)13Differential equations• Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)			marginal rate of substitution, marginal products.	
 Application to cost minimization (EM9.2) Application to cost minimization (EM9.2) Review of the Lagrange multiplier and its interpretation (EM9.3). Graphical representation of constrained problems: Iso-curves (EM9.4) Applications to utility maximization, production, and cost minimization (EM9.3) • Envelope theorem* Review of definite and indefinite integrals and integration rules (EM11.1-11.4) Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) for linear and non-linear demand and supply functions. Introduction to difference equations (EM12.1-12.2) Solution and stability of first order linear difference equations (EM12.3-12.4) Harrod-Domar growth model (MIK E4.6) Introduction to differential equations (EM13.1) Solution and stability of first order differential equations (EM13.2-13.3) 	0	Unconstrained optimization	• Review of multivariate optimization (EM9.1-9.2)	
10 Constrained optimization • Review of the Lagrange multiplier and its interpretation (EM9.3). 11 Graphical representation of constrained problems: Iso-curves (EM9.4) 11 Integration • Review of definite and indefinite integrals and integration rules (EM11.1-11.4) • Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) • for linear and non-linear demand and supply functions. • Introduction to difference equations (EM12.1-12.2) • Solution and stability of first order linear difference equations (EM12.3-12.4) • Harrod-Domar growth model (MIK E4.6) • Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)	3		•Application to cost minimization (EM9.2)	
10 Constrained optimization • Graphical representation of constrained problems: Iso-curves (EM9.4) 11 Integration • Applications to utility maximization, production, and cost minimization (EM9.3) • Envelope theorem* 11 Integration • Review of definite and indefinite integrals and integration rules (EM11.1-11.4) • Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) • for linear and non-linear demand and supply functions. 12 Difference equations • Introduction to difference equations (EM12.1-12.2) 13 Differential equations • Introduction to differential equations (EM13.1)		Constrained optimization	• Review of the Lagrange multiplier and its interpretation (EM9.3).	
 Applications to utility maximization, production, and cost minimization (EM9.3) • Envelope theorem* Integration Review of definite and indefinite integrals and integration rules (EM11.1-11.4) Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) for linear and non-linear demand and supply functions. Introduction to difference equations (EM12.1-12.2) Solution and stability of first order linear difference equations (EM12.3-12.4) Harrod-Domar growth model (MIK E4.6) Introduction to differential equations (EM13.1) Solution and stability of first order differential equations (EM13.2-13.3) 	10		• Graphical representation of constrained problems: Iso-curves (EM9.4)	
11 Integration • Review of definite and indefinite integrals and integration rules (EM11.1-11.4) • Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) for linear and non-linear demand and supply functions. • Introduction to difference equations (EM12.1-12.2) • Solution and stability of first order linear difference equations (EM12.3-12.4) • Harrod-Domar growth model (MIK E4.6) • Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)			• Applications to utility maximization, production, and cost minimization (EM9.3) • Envelope theorem*	
11 Integration •Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5) for linear and non-linear demand and supply functions. 12 Difference equations • Introduction to difference equations (EM12.1-12.2) • Solution and stability of first order linear difference equations (EM12.3-12.4) • Harrod-Domar growth model (MIK E4.6) • Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)	11	Integration	• Review of definite and indefinite integrals and integration rules (EM11.1-11.4)	
12 Difference equations 13 Differential equations for linear and non-linear demand and supply functions. • Introduction to difference equations (EM12.1-12.2) • Solution and stability of first order linear difference equations (EM12.3-12.4) • Harrod-Domar growth model (MIK E4.6) • Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)	11		•Applications to consumer's surplus(EM11.6), and producer's surplus (EM11.5)	
12Difference equations• Introduction to difference equations (EM12.1-12.2) • Solution and stability of first order linear difference equations (EM12.3-12.4) • Harrod-Domar growth model (MIK E4.6)13Differential equations• Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)			for linear and non-linear demand and supply functions.	
12 Difference equations • Solution and stability of first order linear difference equations (EM12.3-12.4) • Harrod-Domar growth model (MIK E4.6) • Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)	12	Difference equations	• Introduction to difference equations (EM12.1-12.2)	
• Harrod-Domar growth model (MIK E4.6) • Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)			• Solution and stability of first order linear difference equations (EM12.3-12.4)	
13 Differential equations• Introduction to differential equations (EM13.1) • Solution and stability of first order differential equations (EM13.2-13.3)			• Harrod-Domar growth model (MIK E4.6)	
• Solution and stability of first order differential equations (EM13.2-13.3)	19	Differential equations	• Introduction to differential equations (EM13.1)	
	10		• Solution and stability of first order differential equations (EM13.2-13.3)	

CBA Competency Goals

1. **Analytical Competency**: A CBA graduate will be able to use analytical skills to solve business problems and make a well-supported business decision.

Student Learning Objectives:

- 1.1 Use appropriate analytical techniques to solve a given business problem.
- 1.2 Critically evaluate multiple solutions to a business problem.
- 1.3 Make well-supported business decisions.
- 2. **Communication Competency**: A CBA graduate will be able to communicate effectively in a wide variety of business settings.

Student Learning Objectives:

- 2.1 Deliver clear, concise, and audience-centered presentations.
- 2.2 Write clear, concise, and audience-centered business documents.
- 3. Information Technology Competency: A CBA graduate will be able to utilize Information Technology for the completion of business tasks.

Student Learning Objectives:

- 3.1 Use data-processing tools to analyze or solve business problems.
- 4. **Ethical Competency**: A CBA graduate will be able to recognize ethical issues present in business environment, analyze the tradeoffs between different ethical perspectives, and make a well-supported ethical decision.

Student Learning Objectives:

- 4.1 Identify the ethical dimensions of a business decision.
- 4.2 Recognize and analyze the tradeoffs created by application of competing ethical perspectives.
- 4.3 Formulate and defend a well-supported recommendation for the resolution of an ethical issue.
- 5. General Business Knowledge: A CBA graduate will be able to demonstrate a basic understanding of the main business disciplines' concepts and theories.

Student Learning Objectives:

5.1 Acquire a fundamental understanding of knowledge from the main business disciplines (e.g. finance, accounting, marketing, and management information systems, among others).